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The one-parameter method of calculating the turbulent boundary layer of  a compressible gas with positive 
axial pressure gradient is analyzed. Theory is compared with experiment. One of the advantages of this 
method is its simplicity. 

The approximate one-parameter method of calculating tt~e supersonic turbulent boundary layer in the region of 
a diffuser is based on the limit laws of Kutateladze and Leontev [3], according to which the momentum equation for 
flow of a compressible gas is 
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Equation (1) was obtained from the usual form of the momentum equation by substituting the expression 

Ct = ~tq~T Go (2) 

and then linearizing as in the Loitsyanskii-Buri method. Here ST is the relative change in the friction coefficient taking 
into account the compressibility and the fact that the process is nonisothermal; ~bf is the change taking into account 
the axial pressure gradient. It should be noted that (2) is based on the assumption that the functions ST and ~bj~ have 
separate effects on the friction coefficient.  There is no direct experimental confirmation of this assumption, and one 
can only point out that, for example, separate allowance for the nonisothermal effect and degree of injection on a 
permeable plate has proved very fruitful and the validity of this procedure has been confirmed theoretically [4]. 

Because the value of the shape factor Hcr enters into (1), this equation becomes more accurate in the region close 
to separation. It is also sufficiently accurate in the region remote from the separation point, since the second term is 
then generally small. 

Values of ~T and Hcr have been found theoretically and are given in [3]. According to relations approximating 
the theoretical solutions 

Hcr  = 2 . 4 1 T *  + 1 . 3 8 A T - -  0.53, 
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Formula (3) has been confirmed by experiments for isothermal conditions [5], and (4) for zero-gradient flow [4, 6]. 



Expressing C f0 as 

cfo = B (Re**) - m  0~o/~oo) ~ = 0.0252 (Re**)-o-~ (,~o/~oo)O -~, 

we obtain the integral Of (1) 
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The dynamic turbulent boundary layer in a supersonic two-dimensional diffuser has been investigated in tests by 
McLafferty and Barber [1]. The pressure in the diffuser increased smoothly. The following data, give n in [1] were used 
in a calculation based on (6): Too = 388~ diffuser wall thermally insulated, P00 = 0.98 �9 l0 s n /m 2 when x = 0, 6**-= 
= 0.406 mm (see Fig. 4). 

Values of the Mach number along the diffuser for x = x/L = 0; 0.2; 0.4; 0.6; 0.8; 1.0 were, respectively, 3.01; 
3.00; 2.68; 2.32; 2.24; 1.90. 

As may be seen from the figure, the agreement between the experimental and theoretical data on momentum 
thickness is quite satisfactory. It should be noted, incidentally, that calculation of 5"*, putting Hcr = H0 = f (M) and 
~T = 1 in (1) also gives results close to the experimental value, which is attributable to mutual compensation of the 
assumptions Hcr = H0 and ST = 1. 

There is also practical interest in determining the displacement thickness 5", which may be found from a knowl- 
edge ~ 5"* and H. The value of H for gradient flow of an incompressible fluid may be found using thd relation 
H = f(f), obtained from a computer solution of the corresponding system of equations [4]. This system contaim, in 
particular, equations describing the velocity distribution in the boundary layer, the stability conditions, etc. The rela- 
tion H = f ( f )  for an incompressible fluid and Re** ~ oo is shown in Fig. 1 (1), where 

Hcr [cr Wo dx 
f c r , =  0.01 - - 0 . 0 4 4  (Re**) - ~  

The influence of compressibility on the relation ~ = f (7) in the first approximation may be found as follows. 

When f = 1; ff = 1 for any value of M; by definition, here f = f/fcr ; Jet  = [0 .01-0 .044  (Re**)'~ ] $ .  -1.~,  i . e . ,  
in accordance with [4], the influence of compressibility on for is taken into account. In order to find H when f = 0 
(i. e . ,  for the case of flow over a plate), we examine successively the quantities Hcr and H. 

Values of Hcr are found according to (3). The value of H 
for various M numbers may be determined from the expressions 
for 6" and 6 '* ,  if the law of variation of velocity and density in 
the boundary layer is given. In our calculations we assumed a 
"one-seventh" law of velocity variation in the boundary layer, 
and the Crocco equation of density variation. 

W h e n r =  land Op = 0  
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_p_p = T_A_o" T 

Po T ' To 
- -  W* - -  (W* - -  1) m2. 

Strictly speaking, the exponent n in the velocity distribu- 
tion law is a function of the M number, but variation of n may 
be neglected at medium values o f  M, as shown by experiment 
[7,8]. The assumptions made are also confirmed by the graph in 
Fig. 2, which shows the experimental dependence of H/Hn=i/~ 
on Re** and M(H is the experimental value of the shape factor, 
and Hn=I/T the theoretical). This graph shows that the ratio 
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Fig. I. Dependence of shape factor 

on separation parameter f for Re** -~ 
at various M numbers: 1) M=0;2) M=2; 
3) M = 4 ; 4 )  M = 6 ; 5 )  M = 8 ; 6 )  M = I O .  



H/Hn=I/7 is quite close to unity, and no differentiat ion with respect to M number is seen. This gives a sure basis for 
using the parameter  Hn=l/7 to determine H when f = 0 at various M numbers, as shown in Fig. 1. For 0 < f < 1 the 
values of H in the first approximation may  be found from a l inear  approximation in terms of the two sufficiently 
re l iab le  values of H when f = 0 and f = 1, by analogy with the relat ion H = f (T)  at M = 0, where it is close to 
l inear .  
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Fig. 2. Effect of Re** and M on shape factor H for flow 
of a liquid along a plate  according to the data of [1]: 
a) M = 2; b) 2.5; c) 3.0;  d) 3.5 (from the data of [14] ) ;  
e) 5 .8 .  

Values of H for the exper imenta l  conditions of [1] were found from (6) and Fig. 1. Figure 3 shows a comparison 
of the exper imenta l  and theore t ica l  data .  It can be seen from thegraphs  that the proposed method of determining dis-  
p lacement  thickness gives quite acceptab le  results. 

It should be borne in mind that the results obtained in calculat ing 6** stil l  do not give sufficient confirmation of 
assumption (2), because of the compara t ive ly  weak influence of functions S T and @f on Re**. The va l id i ty  of  r e l a -  
t ion (2) may  be verif ied only by comparing exper imenta l  and ca lcula ted  values of C f .  Unfortunately, we are not 

aware of the existence of  exper imenta l  data on direct  measurements of the friction coeff icient  in a flow of compress-  
ible gas in a diffuser. 
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Fig. 3. Variat ion of H in a supersonic diffuser ac -  
cording to theory and experiment:  1) exper iment  [1];  
2) theory [13]; 3) theory [I]; 4) present method. 

The method of determining local values of the friction coefficients from the logarithmic part of the velocity pro- 
file in the boundary layer in the coordinates ~/w0 r-cf/2; log (~]fCJ2/vw)has given good results for gradient 
flow of an incompressible fluid in the presence of cross flow [9, I0, II]. Ln [7, 8] it was noted that the logarithmic 

pa r t  of the veloci ty  profile is preserved for flow of a compressible gas along a flat  p la te ,  with the flow parameters  

p, ~ referred to wall  temperature .  

We have a t tempted  to determine  the values of Cf for flow of a compressible gas in a diffuser, using the veloci ty  
profile in the boundary layer given in [1] .  The calculat ions showed that the logar i thmic  part of the profile is p re -  

served in these conditions also. 

The veloci ty  distribution in the turbulent boundary layer of a compressible gas is more rigorously determined by 
the " logar i thmic  sine" law, can also be used to find values of C f ,  if one knows the empir ica l  constants of turbulence 

~ ,  the thickness of the viscous sublayer 771, and the ve loc i ty  at its edge ~1,  

According to [8, 12],  for medium values of  M, we may  assume that ~ =  0.41, ~ll = ~~ = 11.G - 11.9.  

Values of Cf found in this way are compared in Fig. 4 with calcula t ions  based on (1), (2), and (5). It should be 

stressed that  the results of ca lcula t ing Cf by the one-paramete r  method are strongly dependent on the variat ion of 

the axia l  pressure gradient .  Taking this into consideration and allowing for some error in the measurement  of the 



velocity at the outer edge of the boundary layer in [1] we may regard the agreement of the calculated and experiment- 
al C~ values as quite satisfactory. However, additional experimental material is required for final confirmation of the 
validity of this method of calculating the turbulent boundary layer in a flow of compressible gas in the region of a dif- 
fuser. 
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Fig. 4. Comparison of experimental and theoretical values of Cf and 
6"*: a) experimental values of w 0 [1]; 1) law of variation of w0 = f(x) 
for calculation of Cf and 6*% b,c) Values of Cf found from the velo- 
city profiles reduced in accordance with the "logarithmic sine" law and 
the universal logarithmic law; 2) theoretical values of Cf according to 
(1), (2), and (5); d) experimental values of 6** from [1]; 3) values of 
6"* according to (6); 4) values of 6** according to (6) for ~T = 1 and 

Hcr = H0 = f(M). 

NOTATION 

P0, W0 and p, w-densi ty  and velocity at outer edge of boundary layer and in boundary layer; 6**-momentum 
thickness; L--characteristic length ~" = x/L; Hcr-va lue  of shape factor H = 5'/6"* at separation point; Cf0 ,1oca l  fric- 
tion coefficient on plate under isothermal conditions; w-re la t ive  velocity i n boundary layer; P00-stagnation pressure; 
M-Mach  number; r - recovery  factor; k -ad iaba t ic  exponent; T w, Too, and T0-wall ,  stagnation, and thermody- 
namic temperature; gt00 and g0-dynamic viscosity at stagnation and thermodynamic temperatures; C f - l o c a l  value of 
friction coefficient; ~* -k inet ic  temperature factor; ~- tempera ture  factor; H0--value of parameter H for flow over 
a plate; f c r o - v a l u e  of shape factor f at separation point. Subscripts: "0" -parameters  at outer edge of boundary 
layer; "00"-parameters  under stagnation conditions. 
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